内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。 内存是由内存芯片、电路板、金手指等部分组成的。
FPM是Fast Page Mode(快页模式)的简称,是较早的PC机 内存类型 普遍使用的内存,它每隔3个时钟脉冲周期传送一次数据。现在早就被淘汰掉了。
EDO是Extended Data Out(扩展数据输出)的简称,它取消了主板与内存两个存储周期之间的时间间隔,每隔2个时钟脉冲周期传输一次数据,大大地缩短了存取时间,使存取速度提高30%,达到60ns。EDO内存主要用于72线的SIMM内存条,以及采用EDO内存芯片的PCI显示卡。这种内存流行在486以及早期的奔腾计算机系统中,它有72线和168线之分,采用5V工作电压,带宽32 bit,必须两条或四条成对使用,可用于英特尔430FX/430VX甚至430TX芯片组主板上。也已经被淘汰,只能在某些老爷机上见到。
SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。既然是“同步动态随机存储器”,那就代表着它的工作速度是与系统总线速度同步的。SDRAM内存又分为PC66、PC100、PC133等不同规格,而规格后面的数字就代表着该内存最大所能正常工作系统总线速度,比如PC100,那就说明此内存可以在系统总线为100MHz的电脑中同步工作。与系统总线速度同步,也就是与系统时钟同步,这样就避免了不必要的等待周期,减少数据存储时间。同步还使存储控制器知道在哪一个时钟脉冲期由数据请求使用,因此数据可在脉冲上升期便开始传输。SDRAM采用3.3伏工作电压,168Pin的DIMM接口,带宽为64位。SDRAM不仅应用在内存上,在显存上也较为常见。
严格地说,DDR应该叫DDR SDRAM,人们习惯称为DDR,部分初学者也常看到DDR SDRAM,就认为是SDRAM。DDR SDRAM是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次数据,它能够在时钟的上升期和下降期各传输一次数据,因此称为双倍速率同步动态随机存储器。DDR内存可以在与SDRAM相同的总线频率下达到更高的数据传输率。与SDRAM相比:DDR运用了更先进的同步电路,使指定地址、数据的输送和输出主要步骤既独立执行,又保持与CPU完全同步;DDR使用了DLL(Delay Locked Loop,延时锁定回路提供一个数据滤波信号)技术,当数据有效时,存储控制器可使用这个数据滤波信号来精确定位数据,每16次输出一次,并重新同步来自不同存储器模块的数据。DDL本质上不需要提高时钟频率就能加倍提高SDRAM的速度,它允许在时钟脉冲的上升沿和下降沿读出数据,因而其速度是标准SDRAM的两倍。从外形体积上DDR与SDRAM相比差别并不大,他们具有同样的尺寸和同样的针脚距离。但DDR为184针脚,比SDRAM多出了16个针脚,主要包含了新的控制、时钟、电源和接地等信号。DDR内存采用的是支持2.5V电压的SSTL2标准,而不是SDRAM使用的3.3V电压的LVTTL标准。
RDRAM(Rambus DRAM)是美国的RAMBUS公司开发的一种内存。与DDR和SDRAM不同,它采用了串行的数据传输模式。在推出时,因为其彻底改变了内存的传输模式,无法保证与原有的制造工艺相兼容,而且内存厂商要生产RDRAM还必须要缴纳一定专利费用,再加上其本身制造成本,就导致了RDRAM从一问世就高昂的价格让普通用户无法接受。而同时期的DDR则能以较低的价格,不错的性能,逐渐成为主流,虽然RDRAM曾受到英特尔公司的大力支持,但始终没有成为主流。RDRAM的数据存储位宽是16位,远低于DDR和SDRAM的64位。但在频率方面则远远高于二者,可以达到400MHz乃至更高。同样也是在一个时钟周期内传输两次数据,能够在时钟的上升期和下降期各传输一次数据,内存带宽能达到1.6Gbyte/s。 普通的DRAM行缓冲器的信息在写回存储器后便不再保留,而RDRAM则具有继续保持这一信息的特性,于是在进行存储器访问时,如行缓冲器中已经有目标数据,则可利用,因而实现了高速访问。另外其可把数据集中起来以分组的形式传送,所以只要最初用24个时钟,以后便可每1时钟读出1个字节。一次访问所能读出的数据长度可以达到256字节。
电脑内存条,一般以容量作为标准,内存条通常有8MB, 16MB, 32MB, 64MB, 128MB,256MB等容量级别,目前,4GB,8GB内存已成为了主流配置
在内存生产之前,必须先对内存PCB(印刷电路板)、内存芯片等原料进行检验,确认质量合格后就可开始生产了。
内存生产的第一道工序是刮锡膏,刮锡膏机将内存PCB上需要焊接芯片的地方刮上锡膏。锡膏的作用辅助芯片粘贴在PCB上。
刮完锡膏后,工人要对PCB进行检测,先用精密的AOI(Automatic Optical Inspection,自动光学检测仪)判断PCB上刮锡膏的地方是否有缺陷。
AOI检测结束后,工人还要检测PCB上各部分锡膏厚度是否均匀,有问题的产品会立刻被挑选出来,避免进入下一个生产环节。
接下来就要在PCB上安装内存芯片、SPD(串行存在检测)芯片等元件,这就要借助高速的SMT(表面贴装技术)机完成这项工作了。
贴片元件通过锡膏粘附在内存PCB上之后,还必须通过回流焊来完成焊接,这样元件就能固定在PCB上了。
经过回流焊之后,内存基本上就成型了。接下来就要进行测试了。首先利用X光机检测BGA(球状栅格阵列)封装或者WLCSP(晶圆级芯片封装)的内存芯片的锡球,看焊接是否正常。
X光检测后就要对整个内存PCB进行全面细致的外观检测,这个过程是工人在放大镜下以目测方式进行的。
目测通过后的内存就进入自动贴标工序,自动贴标机会自动将产品条码贴在每一片内存模组上。条码上主要记录内存模组的料号,生产流水序号,产品规格等。
由于内存模组是以连板的形式生产的,因此,打标后的连板内存模组必须通过自动裁板机分割成单一的内存模组,即我们平常看到的单根内存条。
我们知道,一般每根内存条上都有一个SPD芯片,里面记录了该内存条的工作频率、工作电压、速度、容量等信息。所以完成裁切的每根内存条就进入了SPD信息的写入工序。
接下来工人就开始对内存条进行详细严格的功能测试。测试项目有容量、SPD信息、数据存取等,当然,不同规格的内存测试项目是不一样的。
完成测试后的内存条还必须通过最后一次外观检测,确认没有问题后,工人就开始进行包装了。
确认没有问题后,工人就开始进行包装了。
包装后的内存条进行抽取检验
抽检合格后就可以出货了。
木金, 萌面人Ve, 木又, Zhrlianer